Population pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation

Pharmacokinetic/pharmacodynamic phenotypes are identified using nonlinear random effects models with finite mixture structures. A maximum a posteriori probability estimation approach is presented using an EM algorithm with importance sampling. Parameters for the conjugate prior densities can be based on prior studies or set to represent vague knowledge about the model parameters. A detailed sim...

متن کامل

Maximum a Posteriori Estimation of Coupled Hidden Markov Models

Coupled Hidden Markov Models (CHMM) are a tool which model interactions between variables in state space rather than observation space. Thus they may reveal coupling in cases where classical tools such as correlation fail. In this paper we derive the maximum a posteriori equations for the Expectation Maximization algorithm. The use of the models is demonstrated on simulated data, as well as in ...

متن کامل

Maximum Lq-Likelihood Estimation via the Expectation Maximization Algorithm: A Robust Estimation of Mixture Models

We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models using our proposed expectation maximization (EM) algorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EMLq are studied through simulated mixture model data. Compared with the maximum likelihood estimation (MLE) which is obtained from the EM algorithm, the MLqE pro...

متن کامل

Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains

In this paper a framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented. Three key issues of MAP estimation, namely the choice of prior distribution family, the specification of the parameters of prior densities and the evaluation of the MAP estimates, are addressed. Using HMMs with Gaussian mixture state observation densities as an example, it is assumed ...

متن کامل

Maximum a posteriori probability tree models

The context-tree weighting method (Willems, Shtarkov, and Tjalkens [1995]) can be used to compress sequences generated by tree sources. Its redundancy behavior is optimal in the sense that Rissanen’s lower bound [1984] is achieved. Here we study some questions related to the context-tree weighting method. First we stress again that the a priori distribution over all tree models that is mainly c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2009

ISSN: 0167-9473

DOI: 10.1016/j.csda.2009.04.017